(5+4+4 points)

Dept. of Math. and Comp. Sc.

Final Examination

Duration: 120 minutes

Calculators and mobile phones are not allowed.

Answer all of the following questions.

1. Let $f(x) = \ln(1+2^x)$. Show that f^{-1} exits and find $f^{-1}(x)$. Find also the domain and range of f^{-1} .

2.(a) Find
$$\frac{dy}{dx}$$
, if $y = \frac{x^{\sin^{-1}x}}{e^{\sinh x} 3^x}$

(b) Find the limit, if it exits:
$$\lim_{x\to\infty} (1-\frac{e}{x})^x$$
 (3+3 points)

3. Evaluate the following integrals

(a)
$$\int \frac{1}{2 - \sin x} dx$$
, (b) $\int e^x \tan^{-1} e^x dx$, (c) $\int \frac{x^2}{(x - 1)^3} dx$.

4. Determine whether the following integral is convergent or divergent. Find its value, if convergent.

$$\int_0^{\frac{\pi}{2}} \frac{\tan x}{1 + \ln(\cos x)} dx.$$
(5 points)

5. Given are two curves by the polar equations $r_1 = 4$ and $r_2 = 2 + 2\cos\theta$.

(a) Sketch the graph of the curves and label the points on the axes $\theta = 0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}$.

(b) Find the area of the region that is inside the graph of r_1 and outside the graph of r_2 . (3+3 points)

6. Find the arc length of the curve defined parametrically by the equations $x(t) = t - \tanh t$, $y(t) = \operatorname{sech} t$ for $0 \le t \le 2$. (4 points)

7.(a) Given points P(1,1,0), Q(-1,1,-2) and R(0,2,-1), find the component of \overrightarrow{PQ} along \overrightarrow{PR} .

(b) Show that the lines

$$(L_1): x = 4 + 2t$$
 $y = 2 + 3t$ $z = 8 + 5t$

$$(L_2): x = 5 + 3u y = -2 - u z = 5 + 2u$$

intersect and find an equation of the plane they determine. (3+4 points)

Total 50 points.